TiC-based nanocomposite coatings as electrical contacts

نویسنده

  • Jonas Lauridsen
چکیده

This Thesis concerns the advanced surface engineering of novel TiC-based nanocomposite and AgI electrical contact materials. The objective is to make industrially applicable coatings that are electrically conductive and wear-resistant, and have a low coefficient of friction. I have studied electrical contact systems consisting of a Cu substrate with a Ni diffusion barrier and loading support, and a conductive top coating. The contact systems were characterized by x-ray diffraction and photoelectron spectroscopy, analytical electron microscopy, ion beam analysis, nanoindentation, resistivity, and contact resistance measurements. Nc-TiC/a-C/SiC nanocomposite coatings consisting of nanocrystalline (nc) TiC embedded in an amorphous (a) matrix of C/SiC were deposited by magnetron sputtering with rates as high as 16 μm/h. These coatings have a contact resistance comparable with Ag at high loads (~800 N) and a resistivity of 160-770 μΩcm. The electrical properties of the contact can be improved by adding Ag to make nc-Ag/nc-TiC/a-SiC nanocomposites. It is possible to tailor the size and distribution of the Ag grains by varying the fraction of amorphous matrix, so as to achieve good conductivity in all directions in the coatings. Ti-Si-C-Ag coatings have a contact resistance that is one magnitude larger than Ag at lower loads (~1 N), and a resistivity of 77-142 μΩcm. The conductivity of the matrix phase can be increased by substituting Ge, Sn or Cu for Si, which also reduces the Ag grain growth. This yields coatings with a contact resistance twice as high as Ag at loads of 1 N, and a resistivity 274-1013 μΩcm. The application of a conductive top layer of Ag-Pd upon a Ti-Si-C-Ag:Pd coating can further reduce the contact resistance. For barrier materials against Cu interdiffusion, it is shown that conventional electroplating of Ni can be replaced with sputtering of Ni or Ti layers. This is an advantage since both contact and barrier layers can now be deposited in and by the same deposition process. For Ti-B-C coatings deposited by magnetron sputtering, I demonstrate promising electrical properties in a materials system otherwise known for its good mechanical properties. In coatings of low B concentration, the B is incorporated into the TiC phase, probably by enrichment on the TiC{111} planes. The corresponding disturbance of the cubic symmetry results in a rhombohedral TiC:B structure. Finally, it is shown that AgI coatings consisting of weakly agglomerated AgI grains function as solid lubricant on Ag contacts. In an Ag sliding electrical contact, AgI decreases the friction coefficient from ~1.2 to ~0.4. After a few hundred operations, AgI grains have deagglomerated and Ag from the underlying layer is exposed on the surface and the contact resistance decreases to < 100 μΩ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient DLC-Based Nanocomposite Coatings as a Solution to Improve Tribological Performance of Aluminum Alloy

The low hardness and poor tribological performance of aluminum alloy as moving component greatly restricts their wide applications in automotive fields. In this letter, an attempt to deposit gradient Ti/TiN/Si/(TiC/a-C:H) multi-layer on aluminum alloy is thus effectively performed by a combined arc ion plating and magnetron sputtering process based on the concept of involving coatings with a fu...

متن کامل

Effects of A-elements (A = Si, Ge or Sn) on the structure and electrical contact properties of Ti-A-C-Ag nanocomposites

Ti-A-C-Ag (A is Si, Ge or Sn) nanocomposite coatings have been deposited by dc magnetron sputtering in an ultra high vacuum chamber. Electron microscopy, energydispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and x-ray diffraction show that all coatings contain nanocrystalline TiC and Ag grains in a matrix of mainly amorphous C. A C/Ti ratio above unity yields a homogenous distr...

متن کامل

Intrinsic Stress and High Temperature Properties of Metal-containing Hydrogenated Amorphous Carbon Coatings

Metal-containing hydrogenated carbon (Me-C:H) coatings have been studied for a few decades and proved to have extensive applications. As members of the Me-C:H family, Ti-containing hydrogenated carbon (Ti-C:H) and W-C:H coatings have been developed typically for mechanical purposes. However, their applications are constrained by the presence of large residual stresses within the coating and deg...

متن کامل

Multifunctional nanostructured Ti-Si-C thin films

In this Thesis, I have investigated multifunctional nanostructured Ti-Si-C thin films synthesized by magnetron sputtering in the substrate-temperature range from room temperature to 900 °C. The studies cover high-temperature growth of Ti3SiC2 and Ti4SiC3, low-temperature growth of Ti-Si-C nanocomposites, and Ti-Si-C-based multilayers, as well as their electrical, mechanical, and thermal-stabili...

متن کامل

Metal carbide/amorphous C-based nanocomposite coatings for tribological applications

This paper tries to assess the factors governing the tribological behaviour of different nanocomposites films composed by metallic carbides (MeC) mixed with amorphous carbon (a-C). Different series of MeC/a-C coatings (with Me: Ti(B) and W) were prepared by magnetron sputtering technique varying the power applied to the graphite target in order to tailor the carbon content into the films. A dee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011